Dissimilatory metal reduction.

نویسنده

  • D R Lovley
چکیده

Microorganisms can enzymatically reduce a variety of metals in metabolic processes that are not related to metal assimilation. Some microorganisms can conserve energy to support growth by coupling the oxidation of simple organic acids and alcohols, H2, or aromatic compounds to the reduction of Fe(III) or Mn(IV). This dissimilatory Fe(III) and Mn(IV) reduction influences the organic as well as the inorganic geochemistry of anaerobic aquatic sediments and ground water. Microorganisms that use U(VI) as a terminal electron acceptor play an important role in uranium geochemistry and may be a useful tool for removing uranium from contaminated environments. Se(VI) serves as a terminal electron acceptor to support anaerobic growth of some microorganisms. Reduction of Se(VI) to Se(O) is an important mechanism for the precipitation of selenium from contaminated waters. Enzymatic reduction of Cr(VI) to the less mobile and less toxic Cr(III), and reduction of soluble Hg(II) to volatile Hg(O) may affect the fate of these compounds in the environment and might be used as a remediation strategy. Microorganisms can also enzymatically reduce other metals such as technetium, vanadium, molybdenum, gold, silver, and copper, but reduction of these metals has not been studied extensively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of extracellular minerals produced during dissimilatory Fe(III) and U(VI) reduction at 100 degrees C by Pyrobaculum islandicum.

In order to gain insight into the significance of biotic metal reduction and mineral formation in hyperthermophilic environments, metal mineralization as a result of the dissimilatory reduction of poorly crystalline Fe(III) oxide, and U(VI) reduction at 100 degrees C by Pyrobaculum islandicum was investigated. When P. islandicum was grown in a medium with poorly crystalline Fe(III) oxide as an ...

متن کامل

Formation of Redox-reactive Subsur- Face Barriers Using Dissimilatory Metal-reducing Bacteria

This paper describes research focusing on the development of a biologically driven permeable redoxreactive subsurface barrier for the elimination of groundwater contaminants. Dissimilatory Metal-Reducing Bacteria (DMRB) have the ability to reduce a wide range of naturally occurring Fe(III)-minerals. In Fe-rich aquifers, DMRBs could be used to establish a zone of reduced Fe, which would serve as...

متن کامل

Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes

Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type c...

متن کامل

Promotion of Ni2+ Removal by Masking Toxicity to Sulfate-Reducing Bacteria: Addition of Citrate

The sulfate-reducing bioprocess is a promising technology for the treatment of heavy metal-containing wastewater. This work was conducted to investigate the possibility of promoting heavy metal removal by the addition of citrate to mask Ni2+ toxicity to sulfate-reducing bacteria (SRB) in batch reactors. SRB growth was completely inhibited in Ni2+-containing medium (1 mM) when lactate served as ...

متن کامل

Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1.

Anaerobic enrichments with acetate as the electron donor and Fe(III) as the terminal electron acceptor were obtained from sediments of Salt Pond, a coastal marine basin near Woods Hole, Mass. A pure culture of a facultatively anaerobic Fe(III) reducer was isolated, and 16S rRNA analysis demonstrated that this organism was most closely related to Pantoea (formerly Enterobacter) agglomerans, a me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of microbiology

دوره 47  شماره 

صفحات  -

تاریخ انتشار 1993